索 引 太字のページは索引項目の解説があることを示す

【数字・欧文】
1/10価層99,101
2光子94
AVFサイクロトロン12
C-1111 , 52 , 61 , 63 , 64 , 70
Co-606 , 7 , 42 , 52 , 58 , 60 ,
63 , 64 , 80 , 102 , 104 , 105
CT4, 13, 14, 17
DNA6, 16, 85, 86, 110
DNAの2本鎖切断110
DNAの損傷85
DNA分子の切断86
F-1861 ~ 63
FDG71
H-270
HIMAC115
I-1316 , 42 , 52 , 63 , 116
IVR119
Li-781 , 82
MRI5 , 17
N-1361 ~ 63
O-1561 ~ 63 , 67
PET11 , 12 , 71 , 94
Pu-23955 , 73
Pu-24073
Q値65,69,70,72,73,77,
78

U-23473
U-23552
U-23851 , 55 , 73 , 78
W値109 , 110
X線4,15,33,54,87,91
X線診断3
X線増感フィルム4

【あ】	23 , 24 , 27 , 30 , 33 ~ 35 , 37 , 40 ,
アインシュタインの関係式30	66 , 67
アボガドロ数44,60,79,90	エネルギー吸収係数99
アルファ線87	エネルギー吸収量117
アルファ崩壊54,56,81	エネルギー準位28,29,56
アルファ崩壊の理論10	エネルギー損失108
アルファ粒子9,10,12,39,	エネルギー保存33,34,54,
51 , 54 , 55 , 67 , 81 , 82 , 106	69 , 115
~ 110 , 112 ~ 114 , 119	エネルギー流密度 105, 118,
イオン30,86,87,106,107,	119
113 , 115	エレクトロンボルト21,86,
イオン化エネルギー30,86	87
イオン対109 , 110 , 112	遠距離力47
イオン対の数109 , 110	オージェ電子56,91
イオンの数109	汚染密度83
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	如 + 左 千毛
一次電離109	親核種56 , 57
一次電離109 胃の検査3	祝久惶
	税核性50 , 5/
胃の検査3	
胃の検査3 医療事故85	【か】
胃の検査	【か】 外部照射6,88
胃の検査	【か】 外部照射6,88 外部被曝による障害89
胃の検査	【か】 外部照射
胃の検査	【か】 外部照射
胃の検査	【か】 外部照射

核子…39,40,41~45,47,73,	核表面43
114 , 115	核物理8
核子 核子散乱43	核物理学79
核子間の距離43	核物理・放射線8
核磁気共鳴5 , 16 , 17	核分裂13 , 65 , 73 ~ 78
核子数66 , 67 , 72	核分裂生成物65,73,76,77
核子の結合エネルギー45,87	83
核子密度44	核分裂生成物の全放射能の減衰
核種12,41,42,44,45,47	76
~ 59 , 61 , 63 , 65 , 66 , 73 , 76 ,	核分裂連鎖反応13 , 74
77 , 79 , 81 , 103	核变換12 , 16
核図表39 , 47 , 48 , 49	核放射線…1,2,12,53,54,86
核スピン5	~ 88 , 106
核と放射線の物理…3 ,8 ,14 ,20 ,	核融合65 , 77 , 78
23	核融合反応77 , 78
核の液滴模型43	核力13,16,39,42,44,45
核の角運動量57	47 , 49 , 50 , 66
核の構造9,39	核力圏内66
核の電場115	可視光86 , 87
核の崩壊42,53,76,86,87,	加速器6 , 12 , 61 , 70 , 81
113	加速器実験47
核の崩壊の関数59	荷電粒子…15 , 106 ~ 109 , 111 ~
核爆発77	115
核八ザード77	がん細胞…1 , 6 , 8 , 71 , 81 , 82
核半径…39 , 42 , 43 , 44 , 49 , 50 ,	88 , 94
83	冠状動脈3
核反応…8,12,15,52,65~71,	間接イオン化放射線107
79 , 80 , 81 , 86 , 107	がん組織11,71,81,94,96
核反応式66,67,70,83	102 , 103 , 110 , 111 , 115 , 118
核反応断面積79 , 89	119
核反応の4保存則65~67	がん治療…6,7,12,58,68,87

~ 90 , 98 , 102 , 103 , 105 , 106 ,	クーロンポテンシャル49
113 , 115	クーロン力 44 , 47 , 107 , 109 ,
ガンマ線6,7,33,45,54,56	111 , 115
~ 58 , 68 , 73 , 87 ~ 90 , 102 ~	クオーク23
105 , 116	クライン 仁科の式92
ガンマ線の相対強度58	グレイ117
ガンマ線滅菌7	蛍光物質4
ガンマナイフ7 , 104	結合エネルギー39,44~46,
ガンマ放射57	72 , 73 , 77 , 87 , 91 , 99
幾何学的断面積83	原子数密度90 , 111
基底状態10,29,30,37,56	原子番号41,42,50,54~56,
~ 58	67 , 91 , 92 , 111 , 115
軌道電子10 , 27 , 29 , 33 , 40 ,	原子模型9,10
41 , 44 , 47 , 54 ~ 56 , 70 , 86 ,	減弱係数…89~93,97,98,103
87 , 89 , 91 , 106 ~ 108 , 111 ,	原子量80,90
115	原子力発電13
軌道電子捕獲56 , 57 , 63	原子炉61,68,75,81
基本粒子8,19,23,66,86,117	減衰76 , 77 , 96 ~ 99
基本粒子の波長25	高LET放射線108 , 110
吸収線量113 , 117 ~ 119	光子7,9,11,19,23~26,
吸収線量率117	29 , 31 , 33 , 34 , 37 , 54 , 63 ,
吸熱反応70	66 , 71 , 86 , 87 , 89 , 90 ~ 95 ,
行列力学11	97 ~ 99 , 102 , 103 , 106 ~ 108 ,
銀塩フィルム4	111 , 113 , 115 , 117 , 119
空気密度103	光子束密度102,103,119
空中核爆発77	光子の運動量24
クーロン引力44,93	光子のエネルギー7,23,24,
クーロン相互作用66,87,106,	31 , 33 ~ 35 , 37 , 91 , 93 ~ 95 ,
107 , 114	115
クーロン場89,92,107	光子の全断面積89
クーロン反発力44 , 45 , 47	光子ビーム104

光子密度99	重荷電粒子…112 , 113 , 115 , 117
甲状腺治療6,116	重水52
光速20,23,25,32,37,115	重水素45,67
光速不変の原理9	重水素の結合エネルギー45,
光電効果 15,33,89,91,92,	78
94 , 97 , 99 , 119	集団運動17 , 43
腔内照射6,7,62	自由電子33,86,89,91,107
後方散乱115	修復86 , 110
コバルト52	重陽子43
コンピュータ・トモグラフィ	重陽子の結合エネルギー46
4	重粒子医科学センター115
コンプトン効果15,92,93	重粒子線がん治療装置7
コンプトン散乱 …33~35,89,	重力47
91 , 92 , 94 , 95 , 97 ~ 99 , 100	照射時間80
	使用済み核燃料77
【さ】	衝突4,7,9,10~12,33,34,
サイクロトロン12 , 15 , 61 ,	37 , 49 , 52 , 66 ~ 70 , 78 , 79 ,
65 , 70 , 71	89 , 92 , 93 , 98 , 102 , 107 , 108 ,
三次元断層撮影技術4	111 , 117
酸素6,61	衝突確率98
時間のマイナス1.2乗則76	消滅光子93 , 115
しきい値70	真空中9,20,23,26,32,37,
磁気モーメント5 , 16	103 , 113
仕事率密度105 , 106	シンクロサイクロトロン12
実効原子量113 , 114	シンクロトロン115
質量エネルギー吸収係数 99 ~	人体組織90,92,98,100,115,
101 , 118	117
質量欠損45	診断被曝13
質量減弱係数90,92,94,95	水素原子5,10,27~30,33,
質量数41~45,50,54,56,	37 , 42 , 86 ,
60 , 67 , 73 , 77 , 106	スピン5

静止質量9,23~26,31,37,	【た】
40 , 52 , 69 , 93 , 111 , 114	多重散乱115
静止質量エネルギー21,22,	短距離力47
30 , 67 , 69	弾性散乱107 , 108
生成核66,78~80	炭素11,43,52,61
成層圏77	断層画像4
静電エネルギー46	断層画像処理4
制動放射92,93,99,100,	炭素原子97,99
107 , 108 , 114 , 115	断面積79,89,95,97,99,
赤外線86,87	119
斥力43 , 47	窒素61
絶対温度35	地表核爆発83
遷移29,33,37,57,91	中性子8,10,15,23,25,40,
線エネルギー付与108	43 ~ 45 , 48 , 49 , 51 , 52 , 54 ,
線型加速器12 , 102	56 , 66 ~ 68 , 73 ~ 75 , 78 ~ 81 ,
線減弱係数94	86 , 87 , 103 , 106 ~ 108
全中性子数41	中性子気体36
全放射能76	中性子数48,49,52,73
全陽子数41	中性子星51
線量14 , 117	中性子ドリップライン48 , 49
線量評価68	中性子捕獲断面積80,83
造影剤3	中性子捕獲反応68,79
相対性原理9	中性子捕捉療法81,119
相対性理論8,19,22	中性子誘導放射能80
組織内照射6,7,62	直接イオン化放射線107
阻止能108 , 111	治療用核種62
素粒子12,16,23	対消滅11 , 12
素粒子理論16	強い相互作用47
素粒子論8,13	低 LET 放射線108
	電荷 10 , 11 , 15 , 23 ~ 25 , 40 ,
	41 . 46 . 47 . 50 . 54 . 66 ~ 68 .

72 , 87 , 88 , 93 , 106 ~ 108 ,	統計的法則59
111 , 112	特殊相対性理論…9,20,22,23
電荷の保存則67	独立粒子43
電気量75	ド・ブロイ波10
電子4 , 7 , 9 ~ 12 , 14 , 15 , 19 ,	
21 ~ 27 , 29 , 32 ~ 35 , 37 , 40 ,	【な】
41 , 44 , 54 , 56 , 73 , 86 , 87 ,	内部転換55 , 63
89 , 91 ~ 94 , 98 , 99 , 102 , 106	鉛44 , 91 , 95 , 96 , 99 , 104
~ 111 , 114 , 115	鉛製のエプロン91
電磁気力47	軟組織99 , 100 , 118 , 119
電子シンクロトロン12	二次光子92 , 98 , 100
電子線7 , 114	二次電子…91 , 92 , 93 , 99 , 108
電子線線型加速器6	109
電子対生成89,92~94,97,	二次電離109
99 , 119	二重らせん構造86
電子の速さ32 , 111	二次粒子108
点線源102~104	日本原子力研究開発機構49
電離78,86,87,107~109,111,	入射光子33 , 34 , 91 , 93 , 98 ,
114 , 115	99 , 119
電離現象115	入射光子束密度97
電離損失107	入射粒子66,69,70,107
電離放射線…86,89,110,111,	ニュートリノ17,23,25,54
117	熱核兵器78
電離放射線被曝88	熱中性子74,79,80
電離密度109 , 110	脳腫瘍65,81,104,119
同位体42	脳腫瘍治療8,81
同位体効果42	
同位体の存在率42	【は】
透過X線3	バーン79
東海村68	肺3 , 114
透過像96,119	パイ電子106

発熱反応70 , 72 , 73	プルトニウム55,73,74
波動力学11	平均エネルギー35 ~ 37, 109
パルサー51	平均自由行程 98, 103, 106
半価層99	107 , 116 , 119
半減期7,48,55,56,58,59,	並行線束105
60 ~ 63 , 68 , 71 , 74 , 76 , 79 ,	並行東97 , 104
80	ベータ線54,73,87,88,106
反応断面積65,79,89	116
反応のQ値65 , 69	ベータトロン12
非相対論的速さ25	ベータ崩壊47,54,56~58
飛程…81,82,111,112,113~	63 , 68 , 73 , 74 , 102
115 , 117	ベータ崩壊の理論10
比電離109 , 111 , 112 , 117	ベーテ111
皮膚層114	ベクレル59
皮膚組織88	ヘリウム7 , 54 , 86 , 87
標的核66 ~ 68 , 79 , 81	ベルゴニー・トリボンドーの法則
標的原子89,107,111	88
標的物質79,90,92,93,98	崩壊53
ビルドアップ100	崩壊図表53 , 56 ~ 58
ファン・ド・グラーフ加速器	崩壊定数59 , 80
12	崩壊の関数53 , 59
不確定性原理11	放射化80
複合核66,68,69	放射性核種6,12,53,59~61
物質波10	63 , 65 , 73 , 79 , 80 , 102 , 106
物質密度3,90	114 , 116
フッ素61	放射性核種の崩壊56 , 58
プラズマ78	放射性同位元素6
ブラッグ曲線111 , 112	放射線医学3,8,14,23,27
ブラッグ・クリーマン則 …113	33 , 87
ブラッグピーク7 , 111 , 115	放射線医学総合研究所7,115
プランク定数9,23,25	放射線源62

放射線障害85	67 , 86 , 106 , 107 , 109 , 110 ,
放射線診断13,85	112 , 119
放射線被曝14,85,88	陽子シンクロトロン12
放射線防護85,91,100,103	陽子数48,49,52,73
放射線防護学14,117	陽子ドリップライン48 , 49
放射線滅菌7	ヨウ素52
放射能…15 , 59 , 60 , 64 , 68 , 76 ,	ヨウ素化合物3
77 , 79 , 80 , 102 , 105	陽電子…11,12,15,24,54,56,
放射能の減衰65 , 76	63 , 67 , 93 , 99 , 106 , 115
放出粒子66	陽電子消滅71 , 93 , 94 , 115
ホウ素52 , 81	陽電子放射核種12,61,71,
ホウ素中性子捕獲反応65	94
飽和係数80	陽電子放射診断52,64
ボーア半径28	陽電子放射断層撮影11
ポジトロン24	陽電子放射断層撮影装置71
ポテンシャル障壁…50~52,55	陽電子放射断層診断65 , 94
ボルツマン定数35	弱い相互作用47
【ま】	[5]
マイクロトロン12	
	リスク2,6,14
マクスウェル分布関数35	リスク2,6,14 リニアック7,12,102
マクスウェル分布関数35 マグネティック・レゾナンス・	
	リニアック
マグネティック・レゾナンス・	リニアック7,12,102 粒子7,9~11,20,21,23~
マグネティック・レゾナンス・ イメージング5	リニアック
マグネティック・レゾナンス・ イメージング5 魔法数48	リニアック
マグネティック・レゾナンス・ イメージング5 魔法数48 密封線源102	リニアック
マグネティック・レゾナンス・ イメージング	リニアック
マグネティック・レゾナンス・ イメージング	リニアック
マグネティック・レゾナンス・ イメージング	リニアック

量子化27
量子数10 , 28
量子トンネル現象55
量子力学8 , 11 , 16
量子論8,9,10,11,19,27,
28 , 33 , 89
臨界事故68
臨界量74 , 75
励起状態29,30,56~58,69
ローレンス・リバモア国立研究
所49

138